Research Interests
- Artificial intelligence
- Reinforcement learning
- Heuristic search
- Artificial life
- Robotics
Education
-
- 2019 - 2024 | University of Alberta
- Ph.D. Computing Science
-
- 2016 - 2018 | University of Alberta
- M.Sc. Computing Science
-
- 2009 - 2014 | University of British Columbia
- B.A.Sc. Mechanical Engineering (Mechatronics)
Research Experience
Openmind Research Institute | Research Fellow | Aug 2024 - Present |
Algorithms for learning in real-time from sensorimotor experience. | |
UAlberta RLAI Laboratory | Research Assistant | Sep 2016 - Jun 2024 |
Online, incremental algorithms for value-based prediction and control in reinforcement learning. | |
Google Deepmind | Research Scientist Intern | Mar 2021 - Jul 2021 |
Long-term temporal credit assignment in reinforcement learning. | |
Huawei Technologies Canada | Research Associate | Apr 2019 - Aug 2019 |
Reinforcement learning applied to self-driving cars. | |
UAlberta Vision & Robotics Laboratory | Research Assistant | Jun 2016 - Aug 2016 |
Reinforcement learning for human-robot interaction and robot learning-from-demonstration. | |
UBC Brain Behaviour Laboratory | Laboratory Engineer | Jan 2013 - Jun 2016 |
Soft-, firm-, and hardware development supporting stroke rehabilitation research |
Publications
Journal Papers
- Wadden, K., Hodges, N., De Asis, K., Neva, J., Boyd, L. (2018). Individualized challenge point practice as a method to aid motor sequence learning. Journal of Motor Behavior.
- Wadden, K., De Asis, K., Mang, C., Neva, J., Peters, S., Lakhani, B., Boyd, L. (2016). Predicting motor sequence learning in individuals with chronic stroke. Neurorehabilitation & Neural Repair.
Conference Papers
- De Asis, K., Sutton, R. S. (2024). An idiosyncrasy of time-discretization in reinforcement learning. RLC 2024.
- De Asis, K., Graves, E., Sutton, R. S. (2023). Value-aware importance weighting for off-policy reinforcement learning. CoLLAs 2023.
- De Asis, K., Chan, A., Pitis, S., Sutton, R. S., Graves, D. (2020). Fixed-horizon temporal difference methods for stable reinforcement learning. AAAI 2020.
- De Asis, K., Sutton, R. S. (2018). Per-decision multi-step temporal difference learning with control variates. UAI 2018.
- De Asis, K.*, Hernandez-Garcia, J. F.*, Holland G. Z.*, Sutton, R. S. (2018). Multi-step reinforcement learning: a unifying algorithm. AAAI 2018.
Extended Abstracts
- Chan, A.*, De Asis, K.*, Sutton, R. S. (2022). Inverse policy evaluation for value-based decision making. RLDM 2022.
- De Asis, K., Bennett, B., Sutton, R. S. (2019). Predicting periodicity with temporal difference learning. RLDM 2019.
Miscellaneous
- De Asis, K., Elsayed, M. (2025). Extending differential temporal difference methods to episodic problems. Under review.
- De Asis, K. (2024). Explorations in the foundations of value-based reinforcement learning. Ph.D. thesis, University of Alberta.
- De Asis, K. (2018). A unified view of multi-step temporal difference learning. Master's thesis, University of Alberta.